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odic solution of the problem on oscillation of a shell with damping taken into account, 
under the conditions 

UiIf=gi(S,t), i=l,2,3, 2 
r 

= g4 (s, t) 

gj (‘, ’ + O) = Rj (‘, ‘), Fiji (8, t + 0) = gjt (S, t), j z 1, 2, 3. 4 

gj (‘, ‘) E Lm (O, O), fijt (S, t) E L” (03 CO), i = 1, 2, 3, 4 

gj (~7 t) E HI/* (I) 1 g3(s, t)EH,,,(lJ, j=l, 2, 4 

where H,il (T) and H,,, (T) are the Sobolev-Slobodetskii spaces, 
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We investigate short-wave oscillations of a plane elastic body, concentrated in 
the vicinity of a smooth convex boundary. We develop an asymptotic process of 
integrating the dynamic equations of the plane theory of elasticity. We obtain 
the expressions for the eigenfunctions and natural frequencies of the short-wave 
oscillations for free and clamped boundaries. 

The short-wave (high frequency) oscillations can be studied with the help of 
various asymptotic methods based, in particular, on the method of rays of geo- 
metrical optics, A systematic presentation of the method of rays and its deve- 
lopment in the boundary value problems of mathematical physics are given in 
[ 1, 23. The method is used to investigate the asymptotic behavior of the eigen- 



functi~s and eigenvalues of the Laplace operator for the case of large eigen- 

values. 
Use of the ray representations to describe the elastic high frequency oscilla- 

tions was apparently first made in [3] in connection with the problem of reflec- 

tion of a cylindrical wave from the boundary of a half-space. Authors of the 

later papers used the method of rays to solve various types of external problems 
of high frequency oscillations in elastic media. An extensive bib~ography rela- 

ted to this problem is given in the survey [4]. There is, however, Still no solution 
available to the problem of free high frequency oscillations of an elastic medium 
which fills a bounded region, when the oscillations penetrate the region to a cer- 
tain depth. The general theoretical studies carried out in [5 - ‘I] also failed to 

supply sufficiently simple final results. 
Below we present a generalization of the asymptotic method given in [Z], to 

the solution of the fundamental internal dynamic problems of the plane theory 
of elasticity for the regions with smooth convex boundaries, in the case of free 
steady-state oscillations, The solution is developed for short- wave oscillations 

concentrated in a narrow strip in the vicinity of the boundary. The strip is con- 
tained between the boundary of the body and the caustic-curve behind which 

(in the inward direction) the oscillations decay exponentially. It was shown in 
[l] that the convexity of the boundary is a necessary condition for the appearance 
of such oscillations. 

1, Let us assume that an isotropic homogeneous elastic medium fills a finite simply- 
connected region G bounded by a closed convex curve r. The coordinates of the points 
z (a) and y (s) on the boundary will be assumed differentiable with respect to the arc s , 
a sufficient number of times. 

For the steady state oscillations, the components of the displacement vector ~(~,~)and 
D(Z, y)are expressed, in the case of plane deformation, in terms of the longitudinal and 

transverse potential q (2, y) and $ (z, y)as follows: 

arp a* 
u=x+ay, ,~2%_.3. 

aY & 

The potentials r$ and I$ satisfy the Helmholtz equations 

where pI h and !.L are the density and the Lami constants of the medium, and 0 is the 

free-oscillation frequency. 
We shall consider the short-wave oscillations near the boundary, using the intrinsic 

(.s, n) -coordinate system where n is the normal to the boundary r and S is the arc 
length of r measured from the initial point, The outward direction of the normal is 
taken as positive, and the traversal of I? is clockwise. Clearly, the (s, n) -coordinates 
are orthogonal and related to the Cartesian system as follows: 

z=z(s)-ny’(s), Y=Y(s)fnOs) 

We choose the most common boundary conditions corresponding to the first and second 
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fundamental boundary value problem of the plane theory of elasticity. These are the 
conditions for a clamped and a free boundary, and in the (s, n) -coordinate system they 

are expressed in terms of the potentials cp and 9 in the form 

acp ag -- 
an as = I 0 

n=o 
0,-t&+$ = 1 n=o 

(1.2) 

for a clamped boundary and 

a29 -- 
an2 ~+23iyf(3++ -$)I,=, = 0 
azcp asq ---- 
an2 a82 2~+f(2~-~)~n~0=0 

(1.3) 

for a free boundary, where r = r (s) is the radius of curvature of the boundary. Since 

the boundary is convex, the radius of curvature F (s) is assumed positive everywhere. 

2. The solutions of the Helmholtz equations constructed in [l, 21 correspond to the 
short-wave oscillations localized in a narrow boundary zone. The form of the solution 
of the Helmholtz equation in an arbitrary region was based on the analysis of the stan- 
dard problem for a circle, and consists of an exponential term multiplied by the Airy 
function Ai( 

We follow the example of [l, 21 and also use the problem for a circular region as 
standard. However, even in this simplest case the boundary conditions (1.2) or (1.3) 

cannot be separated into the conditions for cp and for I$ only. Consequently, Eqs. (1.1) 
form a fourth-order system. At the same time the standard problem allows the separa- 

tion of variables. Let us set cp = @(r)ein@, q = Y (r)ein@ 

where (r., 0) denote the polar coordinates and 7~ > 1 is the number of half-waves in 

in the peripheral direction. As the result of substituting (2.1) into (1. l), we arrive at 

the following system of Bessel equations: 

0,” + F-l 0’ + (o‘y - n2r-2) d, = 0 

y” + F-l Y’ + (02C2-2 - ?Z’r-‘) y = 0 

(2.2) 

We seek a solution of (2.2) in a definite range of frequencies satisfying the condition 

C2 6 + F < CI (2.3) 

It is in the range (2.3) of frequencies and only within this range that the oscillating in- 

tegrals of Eqs. (2.2) are concentrated in a narrow strip near the boundary. In fact, the 
solution of the first equation of the system (2.2) under the condition (2.3) is expressed 
by an asymptotic expansion of the Bessel function J, (or/cl), when the argument and 
index are large values and their difference (n - o)r / ci) > 1. The solution of the 

second equation of (2.2) is expressed by an asymptotic expansion of the Bessel function 

J, (~F/Cz)t when the argument is larger or equal to the index. The asymptotic for- 

mula for the function J, (0). / c,) under the restriction indicated, has the form [B] 

J, (x) = + f ’ ‘“,L_ z, K,/,(Z), It:= +r, 2 = 
12 (76 - zJl”2 (2 4) 

3x% * 



From (2.4) it is clear that the integrals decay rapidly on moving away from the circular 
boundary. For the function J,, (or / cz) , we use the following uniform asymptotic ex. 
pansion written in terms of the Airy function [l]: 

J?& (x) = Ai( ,=-$, (2.5) 

The expansion (2.5) yields, in accordance with the properties of the Airy function, the 
integrals Y oscillating in the strip ?j, < )’ < H where fl is the radius of the boun- 
dary and r, = nc2 1 w , and decaying exponentially when r. < r*. The expansions 
(2.4) and (2.5) indicate that if we consider any frequency range different from (2.3), the 
integrals CD and (or) Y either decrease uniformly within this range in an exponential 
manner beginning at the boundary, or oscillate at a considerable distance from the boun- 

dary‘ 
Using the standard expansions (2.4) and (2.5) in a circular region, we represent the 

corresponding solutions of Eq. (I.. 1) for a region with an arbitrary convex boundary in 
the form 9 = FePf, 9 = Ai (paint) e@a 

where F, f, \Y and @ are unknown functions and p is an unknown large frequency 
parameter. We note that in the case of a circular boundary, the solutions (2.6) coincide 
with the asymptotic representations of the exact solutions. 

3, Let us substitute the expressions (2.6) into the system (1. 1). Dividing throughout 
by the exponential factors and taking into account the linear independence of the func- 
tions Ai (z) and Ai’ (z), we obtain 

p2 [Y (vY)~ - (v@)“] f ipA@ + os~s--~ = 0 

Zip’l*(vY . v@) + p’/aAY = 0 
(3.1) 

p2(vf)% F + p [FAf + 2(vj. vF)] + AF - u~c,-~F = 0 

We seek the unknown functions Y, CD, F and the frequency w in the form of expan- 
sions in inverse powers of the large frequency parameter 

Y= Tip-j, CD = 
c 

(Djp-j, & zzz p2 j 
c 

3t_j+~p-it1 (3.2) 
0 0 0 

F = p-'/a 

c 

FjC-%,p-i + p-"/a ~Fi(-'/dp-i +p-lr,FjWp-i 

0 0 0 

The fact that F is represented as a combination of three different expansions in the 
fractional powers of p, follows from the requirement that the quantities used in the gene- 
ral boundary conditions must be of the same order of magnitude. Let us substitute the 

expansions (3.2) into Eqs. (3.1). Equating to zero the coefficients of like powers of p 
we obtain the following systems of recurrent equations: 



656 A. I.. Pop and c. N. chemphev 

ycl ww - (jpJq2 + c2-2 = 0, (VY, * VQ) = 0 (3.3) 

yj(Vy*)2 +2yO(Vy0 * Vyj)-2((v@* * V@j) +C2%-~+f?=Qj-_l 

(pQ3. VYj)+(v'ro * V@j)=Nj_l (i-=f%2,. ..) 

(9f)2 - q-2 = 0 

2 (9f * vF,(-~ “)) + F,+-’ is) (AL\J - xIc,-a) = 0 (I = 1,2,3f 

m=j 
(~1 . vFj(-l ‘“1) + Fj(-’ P,Aj - y2 

c 
xj-~~Fi_,,~(-’ 1’) = Rj-l 

??I=0 
where the right-hand sides are fully determined by the solutions of the approximation 

equations of the lower order. 

4, The boundary conditions for the functions y, CD, F and j follow directly from 
the conditions (1.2) and (1.3), by substi~ting the expressions (2.6) into them. A~uming 

that 9 and CC vary equally along the boundary, we obtain for IZ = U 

ipa,,, Ai + p2,~Ytn Ai’ $- pj,,F + F,, = 0 (4.1) 

ipat,,Ai -+- p+Y,,Ai’ - pj,,F - P,, = 0 

for a clamped boundary and 

{P IY(v*Y. vyl---_(v*~. 9~)l+&.@)Ai+ (4.2) 

Pan @i &rv*Q - VW + PA,‘V Ai’ + IP f9d s 9f) + Atfl F + 
2 (vlfvF) + P-‘&F = 0 

@ [(9@. 9@) - Y (vlY . 9Y)] - iA@,) Ai - p”” 12% x 

(9,‘F l v@‘> + p-%‘Yf Ai’ + IP (vJ * vf) + 4Jt F + 
2(\7.+.f . 9F) + p-‘A+F = 0 

for a free boundary. Here a comma preceding n or s denotes a partial derivative with 
respect to the cor~s~nd~g coordinate. 

The conditions obtained contain the functions Ai and Ai’. To construct the system 
of boundary conditions corresponding to the systems of recurrent equations (3.3), we write 
Ai and Ai’ in the form of expansions in powers of the difference p*ja (Y - Yo) 

Ai @*‘*!I”) = Ai (p’/aY,) + Ai’ (p*/~Y~)(p-‘/3Y~ + . . .> f . . . (4.3) 

Ai’ (p’laY) = Ai’ (p’/~Y,) + Ai” (p”‘~Y,)(p-‘~~\r~ + . . .) + . . . 

Replacing the unknown functions, the frequency and the Airy functions in the conditions 
(4.1) and (4.2) by the expansions (3.2) and (4.3) and equating to zero the coefficients 
of like powers of p, we arrive at the system of the boundary conditions for the consecu- 
tive approximations. 

Let us first write the explicit expressions for the first order approximations to the boun- 
dary conditions, which are the same for both problems and have the form 
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Ai (p*Wo) In=,, = 0 

from which it follows at once that 

YO 1 Tl;aQ = p-w, (4.4) 

where t,, (q = 1, 2, . . .) is one of the first roots of the Airy function. Moreover, the 

requirement that the solutions be periodic and vary along the boundary in an identical 

manner, leads to the following conditions (for n = 0) : 

i@ = f, [paA = 2nM (4.5) 

where M >> 1 is an integer, and the square brackets denote the increment in the value 
of the function in question on traversing the boundary contour once. 

6, We now construct the solutions for the recurrent systems of equations, Since the 
solutions are sought in a narrow strip 1 ?I 1 ( 1, we can write the functions Yj, CDj, 

$‘jf-ri3), f and the coefficient a in the form of Taylor series in terms of the coordinate n 

Yj = c Yjk?Zk, @j = c OjkTZ", f = fknk (5.1) 
0 0 

c 
0 

j7jf-f/‘i = 

z 

7 FjkH I’@, 
a = 1 + 2a,n + a12n2, aI = r-1 

0 

Substituting the expansions (5.1) into the system of differential equations (3.3). we can 
reduce the latter to a system of algebraic equations for the coefficients appearing in the 
expansions for the unknown functions and their derivatives with respect to n - 

Let us consider the solution of the first two approximation equations which are suffi- 
cient for determining the frequencies of the natural oscillations with the accuracy of 
0 (p-“). The first approximati~ equa~ons are 

f,,’ + a-1f,,2 - cl-z = 0, @o,n@o,n + u-QD~,~Y~.~ = 0 (5.3) 

‘YO (Y 0,k2 + c-r Yo,S2) - dio,n2 - a-r (DO,2 + Q-~ = 0 

Let us replace the functions Yo, @, and f by their corresponding expansions from 

(5.1) and extract from the resulting recurrent system, the equations for the terms propor- 

tional to nk (k = 0, 1, 2), omitting those which are not used in the process of deter- 

mining the frequency with the required accuracy 

ft is clear from (5,3) that the coefficients of the expansions of the unknown functions 

(5.1) depend on the small parameter E. Let us write them in the form of the following 

asymptotic sums : 
cr>jk = c a)jkme*, Yj, = zi 

Yj&p, Y, = & (5.4) 
0 0 
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fk = ~fl&? 
0 

Fjk(-'la) -_ c Fjkm(-1 /s&p 

n 

Substituting the sums (5.4) into Eqs. (5.3) and equating the coefficients of like-powers 
of e, we obtain a new system of recurrent equations, below we give the necessary equa- 
tions of the three approximations in E for the terms proportional to nqequations of two 
approximations in E for the terms proportional to rzr and the first approximation equa- 

tions in e for the terms proportional to n2: 

solving the algebraic system (5.5) directly, we find the following approximate expres- 

sions for the unknown functions: 

@ 000 
= * c2%, Yozo = 1/S (2c2)-W-‘JJ [4/9 (r’)* - rr” + 41 (5.6) 

,r 

The function /oo (s) is found from the condition that the solutions vary along the boun- 
dary in an identical manner: foe = i CD,,,. Taking into account (5.6), we obtain 

foe = =t ic,-r s, fiQ = (cr-2 + es-s)% (5b7) 

The plus sign in fro is chosen so as to ensure a rapid decay of the integrals cp on mov- 
ing away from the boundary, The frequency parameter p is found from the first appro- 

ximation of the conditions of periodic&y of (4.5) 

or in its expanded form 

P~~uoo,lds+t~~~~~~~oo~,~~~t,ep-‘l~~~,,2,~~s+...=z~~ (5. Sf 
0 0 0 

where L is the length of the boundary contour, q = 1, 2, . . . and L%!! is an integer. 

Substituting the expressions (5.6) for CD,,, (m = 0, 1, 2) into (5.8) and solving the re- 

sulting equation by the method of consecutive approbation in p, we find 

p = M (b,(@ + bpWLW + b,(s)M-‘/J + , . .) (5.9) 
M>l, ‘1=1,2,.. . 

L 

b4f@ = 2n;el, bp(l) = ele2*f$ 
s 

r--“:s (s) ds 
0 
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The above relations show that the magnitude of the frequency parameter and hence of 
the first approximation for the natural frequency oscillations, are independent of the 
boundary conditions type. 

Using the expressions given in (5.6) for the functions Y,, and Y,r , we now deter- 
mine the zone of oscillations of the integrals 9. The annular zone of oscillation of the 
integrals (2.6) is, in accordance with the properties of the Airy function Ai (t) , con- 
tained between the boundary of the region in which t = t,, and the caustic curve on 

which the argument of the Airy function becomes equal to zero (t := 0). Since in the 
present case t = pva\y, the condition that Y =I 0 and the expansions (3,2), (5.1) 
together yield the following equation of the caustic curve in its first approximation: 

$1, = - YIp,,YOl-l z l/a t,7+ (e&f)-*t’* (5.10) 

Consequently the zone of oscillations satisfies the inequalities 

nc < 12 < 0 (5.11) 

From (5.11) follows the condition of convexity of the boundary: r (a) > 0, since the 
zone of oscillations is contained within the region n < 0 and t, < 0 within this zone. 
The width of the oscillation zone is of the order 0 (M-Q). The latter result agrees 
with those given in [l. 21. 

The second approximation equations are 

The unknown parameter x1 determining the second approximation for the natural fre- 

quency , enters the first equation of (5.12). Let us substitute into this equation the expan- 
sions (5.1) and (5. B), and separate the terms pro~rtional to the zero powers of pz and a. 
This yields 

2oroo, s - Y1,clYonJa - x1c2-2 = 2iQJso (5.33) 

To find the parameter x1 we use the second approximation to the conditions of periodi- 
city (4.5): lQ1,,l = 0. Substituting into (5.13) the known expression for aO,, and 
performing the integration with the periodicity of the radius of curvature of the bound- 
ary contour (r (a $ L) = r (a)) taken into account, we obtain 

I, 

x1 = - ore1 
s 

Y=r,, is) ~im2 (4 d‘s (5.14) 

We find the unknown function YIoO ; s ) f rom the second approximation of the boundary 
conditions (4.1) and (4.2). These conditions, unlike in the first approximation, no longer 
coincide in the case of the free and clamped boundaries. Substi~~g into (4.1) and 
(4.2) the expansions (5.4), we obtain the following boundary conditions for the coeffici- 
ents proportional to E’ : 

~loFooo(-‘~~) - iQ,oo, s’l?l,, Ai’ (ta) = 0 (5.15) 

TOO, ~~~~*(-‘/3~ + YpoIO hi’ (ts) = 0 
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for the clamped boundary and 

VOO, sl~oJ’o~o(-‘L1) + mooo, s2Y~oo Ai’ (tci) = 0 (5.16) 

(liOs - lot,, z) Foo,,-“~) - 2i~D,,~~, s’Yol,, Ai’ (tu) = 0 

for a free edge. 

Considering now (5.15) and (5, 16) as a system of two equations with two unknowns 
F;‘“) and yioO, we find 

F,,,(--‘M = - ie’h Ai’ (Q, Yloo = - e’/a (1 + es2)l/s 

e = 2~ / r, e3 = cz / cl 
(5.17) 

for a clamped boundary and 

Fooo(-‘/3) = - 2ie’/3(2 + ex2)-l Ai’ (t,), ‘1~‘~~~ = (5.18) 
- 4e’ia (2 + es2)-l(1 + es2)l/2 

for a free edge. 

Substituting now (5. 17) and (5. 18) into (5.14), we find that the parameter x1 for the 

regions with a clamped (x,(,,) and a free (x1(,)) boundary is equal to 

xl(,) = 2e, (1 + es2)‘/~~rv1 (s) ck 
J 

0 

respectively. 

XI(~) = gel (1 + es2)l/$ 2 + es2)-l [ r-l (s) & 
0 

Thus we have obtained for both problems the second approximation for the natural 
frequency oscillations, and this enables us to determine this frequency sufficiently accu- 
rately, with the error of 0 (p-1). 

The third and further approximations are constructed in the similar manner. We use 
the general systems (3.3) to extract the equations for the next approximation and the 
corresponding boundary conditions. Substitution of (5.1) into these equations reduces 
them to a linear algebraic system of complexity increasing directly with the order of 
the approximation, and consequently more and more difficult to solve. 
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The inversion of the fundamental relationships of the theory of plastic flow of 
hardening bodies is obtained in the neighborhood of a regular point of an arbit- 
rary loading surface. The stress increments are consequently expressed explicitly 
in terms of the strain increments. 

The fundamental relationships of the theory of a plastic hardening body [l, 21 
under the assumption of the existence of loading functions are in the form of re- 

lationships expressing the increments of strain in terms of the increments ofstress. 
Upon formulating the problems in displacements, for example in the case ofthree- 
dimensional stability problems [3, 41, the increments in stress must be expressed 
in terms of the increments of strain, i. e. the fundamental relationships must be 
inverted. Such an inversion is realized below in the neighborhood of a regular 
point of an arbitrary loading surface for an isothermal strain process in the case 
of small strains. 

1, Following [l, 21, let us write the fundamental relationships of the theory of a plas- 
tic hardening body in the neighborhood of a regular point of the loading surface. We re- 
present the total strain increment as the sum of increments in the elastic and plastic 
strains (we introduce the compliance tensor C for the elastic strain, and we proceed 
from the associated flow law for plastic deformation) 

ck,, = denme + (JE.,,,,P (1.1) 

cl&,, = Cnmij d& (1.2) 

de:,,, = dh-&, when f=O, df=O and d'f>O (1.3) 

de;,,, = 0, when f =O and df 3 d’f < 0 or f < 0 

where f denotes the loading function ; the equation of the loading surface is hence 

f (8, gij, %jP, X8, k,) = 0 (1.4) 


